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The frequency noise of an electronic oscillator is investigated by measuring and analyzing the temporal
fluctuations of its period. Two devices allow the recording of the variations of the average frequency of the
oscillator and of its instantaneous time phase. In order to see if an underlying chaotic process can account for
these fluctuations, the time series are analyzed with the help of three different methods. Two of them rely on
the reconstruction of an embedding space, whereas the third is a multifractal-type approach. All the results lead
to the same conclusion: the temporal fluctuations are consistent with the presence of a low-dimensional
attractor that may be responsible for the remote correlations detected in the dynamical behavior.
@S1063-651X~96!04812-X#

PACS number~s!: 05.40.1j, 72.70.1m, 05.45.1b

I. INTRODUCTION

The low-frequency noise of an oscillator~quartz oscilla-
tor, atomic clock, etc.! is currently analyzed by the use of
two basic tools: Allan variance and power spectral density
@1#. Allan variance is defined as the mean-squared value

sy
2(t)5 1

2 ^@Dyi(t)#
2& of the deviationsDyi(t)5yi11(t)

2yi(t) between successive frequency measurements, each
sampled over a time intervalt. Typically, sy

2(t) follows a
power lawt2q (q integer! over a restricted range oft, with
q.0 ~convergence! over short times,q50 ~flicker noise
floor! at intermediate times, andq,0 ~divergence! at long
times. The short-time dependence results from thermal noise
(q52) in quartz oscillators or masers and shot noise
(q51) in cesium clocks. However, the behavior observed at
intermediate- and long-time scales is still unexplained.

The power spectral density is the second tool. It also fol-
lows a power lawf p (p integer! whose exponent is simply
related toq by q5p11 if 23,p<1, andq52 if p>1 for
stationary processes. In particular, shot noise in an atomic
clock leads to white frequency noise (p50), whereas the
flicker floor (q50) corresponds to a 1/f noise.

The ambiguity on the type of noise whenq52 is over-
come by the modified Allan variance, which averages over
Ns samples so that the effective bandwidth of the measure-
ment decreases from 1/t to 1/Nst. However, there is no
physical explanation for the origin of 1/f noise.

An alternative characterization of the stability@2# is based
on a multifractal-type approach, which involves a three steps
procedure. First, local scaling exponents are computed from
the original data. The resulting series of exponents is then
transformed into a binary coding, which gives valuable in-
sights into the global stability of the system. The last step
consists in constructing a ‘‘devil’s staircase’’ from the cod-
ing to gain topological indications about the origin of the
noise.

In addition, Lorentz@3# initiated the development of a
variety of techniques to analyze erratic time series. Indeed he
showed that the complexity may be only apparent, that is, the
behavior is not necessarily stochastic but may result from a

low-dimensional deterministic chaos. In order to distinguish
between stochastic and deterministic processes, the analysis
of time series generally begins by reconstructing an embed-
ding phase space with the time delays method@4,5#. In the
presence of deterministic chaos, the attractor of the system is
thus unfolded, so that its dynamical properties can be ex-
tracted. The correlation dimension@6#, the Kol’mogorov en-
tropy @7#, the phase portraits and Poincare´ sections@8#, and
the Lyapunov exponents@9# are some features that can be
estimated. In practice, the presence of an attractor is presup-
posed and the ability to detect invariants is taken as a proof
of its existence. Unfortunately, it has been shown@10–12#
that this approach can be misleading. Some stochastic pro-
cesses give rise to a seeming invariant and, conversely, the
determination of the invariants of a chaotic system may be
hindered by the experimental noise. These drawbacks have
motived the emergence of new methods@13,14# that are not
based on the calculation of some dynamical properties, but
instead rely on the topology of the points in the reconstructed
phase space to check the presence of an embedded attractor.

The purpose of this paper is to investigate temporal fluc-
tuations of electronic oscillators with the aim to detect a
possible low-dimensional deterministic process. The two
kinds of experiments used to measure these fluctuations are
briefly described in Sec. II. The time series analyzes based
on the reconstruction of an embedding space are carried out
in the succeeding section by estimating the correlation di-
mension ~Sec. III A! and by investigating the topological
properties of the reconstructed space~Sec. III B!. The
multifractal-type approach is implemented in Sec. IV. The
significant results are finally summarized, and the work is
concluded by a short discussion in relation to nonlinear dy-
namical systems represented by the Arnol’d map.

II. EXPERIMENTAL ARRANGEMENTS

The stability of oscillators can be studied in time or fre-
quency domains. In the present paper, two kinds of time
domain experiments are considered. In one case~Sec. II A!
one measures fluctuations of the average frequency, whereas
the other~Sec. II B! leads to the recording of instantaneous
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phase fluctuations. Two characteristic times have been
proved@15# to have a major influence on the variations of the
measured quantity~frequency or phase! y. These are the
sampling durationt, that is, the time interval during which
y is accumulated, and the sampling periodDt, which repre-
sents the time elapsed between the beginning of two con-
secutive recordings ofy. The differenceDt2t is the so-
called dead time. Thus the outcomes are a collection of
yi(t,Dt), whereyi stands for thei th measurement ofy. In
this regard, the two experiments are complementary. Indeed,
the average frequency is continuously monitored, that is to
say the dead time is equal to zero andDt5t, whereas the
phase measurement is instantaneous (t50), so that the dead
time is equal to the sampling periodDt.

A. Period counting technique

Period counting is the common technique of average fre-
quency measurements with a counter. The oscillator signal
being tested is mixed to a reference signal of nearly the same
frequency to produce a low-frequency beat signal. This sig-
nal is introduced as a trigger to a gate in the reciprocal
counter, which opens at one of its zero crossing. The high-
frequency counter clock signal and the beat signal are accu-
mulated in the counter register and their periods are simulta-
neously counted. The gate closes after an integral number of
cycles of the counter oscillator, which determines the sam-
pling durationt. In this way the resolutiont0 /t only de-
pends on the periodt0 of the 500-MHz counter clock and on
the sampling durationt. In most of the reported recordings
the resolution was made equal to 231029 by sampling dur-
ing 1 s. After each sampling, the number of cycles of the
beat at 101 Hz of two 2.56-MHz oscillators is divided byt to
yield the average frequency. The beat is continuously
sampled so that two consecutive measurements are adjacent
~no dead time! and one can use the shortened notation
yi[yi(t,t), wheret51 s unless otherwise specified.

B. Instantaneous time phase measurement

In this experiment, individual laser pulses are recorded by
a synchroscan streak camera associated with an optical mul-
tichannel analyzer and a microcomputer. The sweep of the
camera is generated by frequency doubling the signal of the
electronic oscillator, which drives the mode locker of the
laser. It has been shown@16,17# that the barycenter of the
streak image is directly related to the time interval between
the arrival time of the pulse and the instant of zero crossing
of the sweep, so that the sampling durationt is equal to zero.
Moreover, a comparison between experimental results and
those deduced from a model evidences@17# that the laser
jitter is less than 3 ps. Therefore, the temporal behavior of
the barycenters~Fig. 1! reflects the instantaneous time phase
fluctuations (;20 ps! of the mode locker oscillator. Experi-
mentally, the train of picosecond pulses is delivered by a dye
laser pumped by a Nd:YAG laser~where YAG denotes yt-
trium aluminum garnet! which is mode locked by an
acousto-optic modulator driven at 40 MHz. The deflection of
the camera is equal to 0.93ps/channel. Each recording con-
sists in 1024 measurements spaced by a sampling period
Dt540 ms. This is all that is needed to define

yi[yi(0,0.04) as thei th measurement, but more details
about the experimental arrangement can be found in@16,17#.

III. EMBEDDED TIME SERIES ANALYSIS

The time delay method@4# amounts to construct a collec-
tion $YW i ,i50,Nv21% of m-dimensional vectors

YW i5~yik ,yik1 l ,yik12l , . . . ,yik1~m21!l ! ~1!

from the scalar time series$yi ,i50,Np21% for given delays
k,l and embedding dimensionm. The embedding theorem
@5# states that, in the case of a system whose trajectory lies
on a d-dimensional attractor, the space underlying the dy-
namics of the system can be unfolded by a proper choice
(K,L,M ) of the parameters (k,l ,m).

The delaysk and l are intended to rule out dynamically
close points, that is, points for whichyi11;yi due to a small
sampling periodDt. Different methods@19# have been sug-
gested to determine the delayl between successive coordi-
nates of a vector. The delayk between the first components
of successive vectors was introduced by Albanoet al. @20#
and can be used to settle the anomaly mentioned by Theiler
@21#. The embedding dimensionm must be chosen suffi-
ciently large for the embedding space to unfold the geometry
of the attractor. This condition is surely met@5# if m.2d,
but the minimal sufficient embedding dimensionM may be
smaller.

The time delay procedure is the starting point of the vari-
ous techniques proposed to detect a possible attractor in a
time series. Two of them are considered, one consisting in
the estimation of the correlation dimension and the other
based on topological considerations.

A. Correlation dimension

The Grassberger-Procaccia algorithm@6# amounts to cal-
culating the correlation integrals

FIG. 1. Temporal fluctuations and structure function@18# of the
pulse positions recorded with the streak camera.
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H~r2uYW i2YW j u! ~2!

for increasing embedding dimensionsm. HereH(r ) is the
Heaviside function anduYW i2YW j u is the Euclidian distance
between YW i and YW j ~excluding YW i itself!, so that
( jH(r2uYW i2YW j u) counts the number of vectorsYW j that lie in
them-dimensional ball of radiusr centered atYW i . The num-
berNv of constructed vectors is related to the numberNp of
points in the original data set byNv511@Np21
2(m21)l #/k. ThusC(m,r ) is the fraction of pairs of em-
bedded vectors closer thanr . In the presence of a strange
attractor, it has been shown@6# that at smallr the correlation
integral displays a scaling region

lim
Nv→`,r→0

C~m,r !5r D2~m! ~3a!

whose exponentD2(m) becomes constant at sufficiently
largem. The resulting correlation dimension

D25 lim
m→M

D2~m! ~3b!

is a lower bound of the fractal dimension@6#.
The correlation integrals have been computed according

to Eq. ~2! for several time series obtained from the experi-
ments described in Sec. II. The data were successively em-
bedded in dimensions 1–10 using the same value for both
delays:k5 l51. The length scale has been normalized such
that the diameter of the embedding space is equal to one. In
all cases, double logarithmic plots ofC(m,r ) versus r
showed a scaling behavior in the range of smallr from
which D2(m) is determined. The exponents are represented
versusm in Fig. 2 for one time series recorded with each

experimental device. Also shown in this figure are the results
arising from a time series computed with the help of a model
@17#, developed to interpret the pulse fluctuations recorded
with streak cameras, by assuming that the laser and elec-
tronic oscillators undergo white Gaussian fluctuations. As
can be seen on the figure, no significant difference is ob-
served between the various cases, except that the correlation
exponents resulting from the simulated data are closer to the
straight line than the others. There is no saturation of the
slope with increasingm, so thatD2 cannot be determined.

In their paper@6#, Grassberger and Procaccia suggested
that their method allows one to distinguish between a chaotic
and a stochastic process for in the latter case the correlation
integrals are expected to scale likerm. However, Fig. 2
shows that, as they present no clear saturation, the correla-
tion exponentsD2(m) do not follow the straight line
D2(m)5m.

The results obtained from the above analysis are quite
elusive, for neither of the expected behaviors are observed.
Even the correlation exponents of the simulated time series,
which is known to depict a white noise, do not follow the
straight line as they should. Nevertheless, they are greater
than theD2(m) of the experimental data, and the difference
increases withm so that the experimental and simulated time
series cannot be considered as behaving alike. Several ways
of improving the algorithm have been proposed@10,20–22#,
but it has been verified@23# that the correlation exponents
presented in Fig. 2 are not sensitive to these modifications
nor to the variation of the delaysk and l . This robustness is
not surprising because the problem with the integral correla-
tion method is that short-time correlations can greatly affect
the outcomes. However, this drawback is not effective in the
present work since the recording of the instantaneous phase
~mean frequency! is performed with a sampling period~sam-
pling duration! that is long compared to typical time scales
of their fluctuations.

The failure of the method has to be sought in the experi-
mental limitations. Indeed, neither of the limits involved in
Eq. ~3a! can be reached. On the one hand, an increase in
Nv increases the recording and computing times. On the
other hand, the limitr→0 is prevented because of the pre-
cision of the measurements and the experimental noise. The
latter is at least equal to the error introduced by rounding off
the data and leads to an overestimation ofD2(m). Moreover,
the incertitudes increase withm since the density of points in
the embedding space lowers, whereas the contribution of the
noise grows. In this regard, there have been a number of
attempts@24–26# to connect the maximum correlation di-
mension attainable to the lengthNp of the time series. These
relations yield a lower~pessimistic! bound of about 2 and an
upper~optimistic! bound of the order of 5 for the lengths of
the considered data. Thus, the correlation exponents reported
in Fig. 2 can result from a stochastic process or from a cha-
otic system, of dimension greater than 2, blurred by the ex-
perimental noise. It is therefore of importance to dispose of
another method that works for short-time series and is less
sensitive to the noise.

B. False neighbor methods

As an introduction, it is worth recalling that the method
presented in the preceding subsection amounts to computing

FIG. 2. Correlation exponents of a beat frequency recording
(s) and experimental~1! and simulated (3) phase fluctuations.
The embedding delays arek5 l51. The straight line of slope 1 is
also shown.
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some invariant of the attractor, namely, its correlation di-
mension. Nevertheless, when applied to actual data, the
method is in fact used to check the existence of the attractor:
if a finite value ofD2 can be found, it is inferred that the
attractor does exist. The false-neighbor methods are thor-
oughly different, for, rather than presupposing the attractor’s
existence, they make use of topological arguments to see if
the attractor really exists.

1. Description

The false-neighbor methods@13,14# use geometrical con-
siderations to compare the vectors constructed inm- and
(m11)-dimensional spaces. This enables one to identify
false neighbors, that is, points that appear to be neighbors
because the embedding dimension is too small. To illustrate
this, consider a system for which the appropriate embedding
dimension isM52 and the attractor is a circle, for example.
If embedded in a one-dimensional space, all the points of the
attractor lie on a straight line, but points that are close on this
line may come from opposite quarters of the circle. Hence
they are false neighbors. Conversely, form>2, the circle
remains unaltered and all the neighbors are true neighbors.
Thus the preservation of neighborhood relations can be taken
as a criterion for the determination of the minimal acceptable
embedding dimension.

Given a reference pointYW i of them-dimensional embed-
ding space, letYW i ,n(m) be itsnth nearest neighbor. In going
from dimensionm to m11, YW i gets a (m11)th coordinate,
namely, YW ik1ml , and its nth nearest neighbor now is
YW i ,n(m11) . In the Euclidian metric, the squared distances be-
tweenYW i and itsnth nearest neighbor are

Dm„i ,n~m!…[uYW i ,n~m!2YW i u2 ~4a!

and

Dm11„i ,n~m11!…[uYW i ,n~m11!2YW i u2 ~4b!

in m andm11 dimensions, respectively.
The averaged wavering product@13# is defined by

W̄5 lnK )
n51

w F Dm„i ,n~m!…

Dm„i ,n~m11!…

Dm11„i ,n~m!…

Dm11„i ,n~m11!…G1/wL
i

.

~5!

Both ratios compare the distance betweenYW i andYW i ,n(m) with
the distance betweenYW i and YW i ,n(m11) , yet they are com-
puted inm andm11 dimensions for the first and second
ratios, respectively. If thenth nearest neighbor inm dimen-
sions remains thenth nearest neighbor inm11 dimensions,
the two quotients are equal to one. So, if the topological
properties of the supposititious attractor are retrieved inm
dimensions,W̄ should be equal to zero. In fact, because of
the addition of a new coordinate in going fromm to m11,
the order of the neighbors may slightly vary even if the rep-
artition of the points is unchanged on the whole, that is, even
if an attractor is embedded in them-dimensional space. The
effect of this ordering variation, which is to unjustly keep off
the two ratios appearing in Eq.~5! from 1, is prevented by

the geometric mean fromn51 ton5w. The wavering prod-
uct is arithmetically averaged over several reference points
YW i in order to restitute the behavior of all the embedding
space. Small deviations from one are enlarged by consider-
ing the logarithm. ThusW̄ approaches 0 when the number of
false neighbors diminishes.

The averaged wavering product depends not only onm,
but also on the lagsk andl . WhenW̄ is plotted as a function
of l for variousm, the appropriate lagL and embedding
dimensionM are determined as those for whichW̄ is mini-
mal as a function ofl and does not significantly decrease
further if the dimension increases. The variation of the third
parameterk likewise enables one to settle its proper value
K. It must be pointed out that it is not the behavior of
W̄/ lDt, as suggested in@13#, that is analyzed, but the behav-
ior of W̄. Indeed, dividing the dimensionless quantityW̄ by
lDt would make the result dependent on the experimental
time scale, which is not necessarily related to the character-
istic time scale of the examined process. In particular, in-
creasingDt would arbitrarily decrease the averaged waver-
ing product. This agrees with the comments of Kennel,
Brown, and Abarbanel@14# and of Liebert, Pawelzik, and
Schuster@13#, who noted that greaterl ‘‘only seem to be
similarly appropriate, due to our rescaling of the wavering
product.’’

Another way to study the topological properties of the
phase space is to compute the false-nearest-neighbors per-
centage @14#. It amounts to comparing them- and
(m11)-dimensional distances betweenYW i and its first neigh-
bor YW i ,1(m) in m-dimensional space. For a given tolerated
relative increase of the distanceRtol , if

Dm11„i ,1~m!…2Dm„i ,1~m!…

Dm„i ,1~m!…
.Rtol

2 ~6a!

is verified, thenYW i ,1(m) is considered as a false neighbor. As
noted by Kennel, Brown, and Abarbanel, this criterion is not
sufficient for actual data because of their limited length. In-
deed, even for white noises, the number of false neighbors
identified by ~6a! may decrease whenm increases, for
YW i ,1(m) may be the first neighbor ofYW i even it is not close to
it. This results in an already large value ofDm„i ,1(m)…, so
that the relative increase may be small. To prevent this, a
second criterion has been introduced@14#: if

Dm11„i ,1~m!….F tols
2~y!, ~6b!

whereF tol is some tolerance factor ands
2(y) is the variance

of the data, the neighbor is declared as false. The false-
nearest-neighbor percentage is computed by applying both
criteria: for a given reference point, its first neighbor is de-
clared as false if either Eq.~6a! or ~6b! is satisfied. All the
embedded vectors are tested to count the number of false
neighbors. This number is finally divided byNv to get a
quantity, namely, the percentage, independent of the length
of the time series.

In this method, a too small embedding dimension results
in a high value of the false-nearest-neighbor percentage be-
cause many neighbors are removed in passing fromm to
m11. Conversely, whenm is sufficiently large to unfold the
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attractor, the number of false neighbors drops to zero. The
alterations of the false-nearest-neighbor percentage induced
by the variation ofk and l allow one to fix their proper
valuesK and L. Thus both of the false-neighbor methods
provide a way to check the presence of an attractor and to
assess the embedding dimension and lags. Moreover, com-
pared to the methods fated to the estimation of attractor in-
variants, their requirements in terms of time series length,
experimental noise, and computing time are less stringent.

2. Application

Each false-neighbor method has been implemented on
several time series. Although it has been suggested@13# to
perform the geometrical average in Eq.~5! over ten neigh-
bors ~if Nv510 000) and the arithmetic mean over about
10% of the data, the influence of bothw and the number of
reference points considered has, nevertheless, been exam-
ined. It is found thatW̄ slightly changes whenw is varied,
but the general trends of the dependence ofW̄ on k, l , and
m are unaffected. The number of reference points considered
influences both the value ofW̄ and its dependence on the
embedding parameters. This is probably due to the shortness
of the time series (Np51024, 2500, or 5000!, so the arith-
metic mean was performed over all theNv embedded points.
Whatever the considered time series, the averaged wavering
product computed according to Eq.~5! is quite indifferent to
the values of the lagsk and l . The same behavior was ob-
served for the correlation exponents and is likewise ex-
plained ~see Sec. III A!. Concerning the effect ofm, it ap-
pears thatW̄ diminishes by a factor of 10 when the
embedding dimension increases fromm51 to m510. Un-
fortunately, the determination of a proper embedding dimen-
sion is intricate because no convergence ofW̄ is observed:
whenm is incrementedW̄ decreases, though less and less,
without reaching zero. This may be due@14# to the inherent
experimental noise. However, the estimation ofM would
require one to have an idea of the value ofW̄ that can be
considered as negligible or is reached when all the neighbors
are false neighbors.

For the calculation of false-nearest-neighbor percentages,
the tolerance factor was fixed atF tol54.0 @14#. The allowed
relative distance increaseRtol was kept as a parameter in
order to appreciate its influence. The effect of varying the
lags was investigated, but, as previously, no significant
modification was detected, so it can safely be inferred that
K5L51. The results of jointly applying the criteria given
by Eqs.~6! for variousRtol are shown for an experimental
@Fig. 3~a!# and a simulated@Fig. 3~b!# time series of instan-
taneous time phase. In both cases, the false-nearest-neighbor
percentage sharply decreases when the embedding dimen-
sion is incremented fromm51 to m5325, depending on
Rtol . Considering the experimental time series, for example,
6.8%, 5.4%, and 4.8% of the false neighbors are left for
Rtol55, 10, and 15, respectively. Other features are common
to both drawings: whenm is further incremented the percent-
age of false neighbors increases and the sensitiveness on
Rtol vanishes whenm>6. A similar behavior is observed for
the beat measurements. Figure 4 shows the results forRtol
fixed but different sampling durations. It is seen that the
false-nearest-neighbor percentage diminishes when the beats

are longer averaged and the convergence is improved. For
sampling durations greater than 1 s, the increase of the
curves beyond their minimum is almost invisible.

As far as the recognition of an underlying attractor is
concerned, the embedding dimension for which the false-
nearest-neighbor percentage is minimal has to be deter-
mined. This involves the estimation of the properRtol . It
should not be chosen too small, because the embedding pro-
cedure always leads to an increase of the distances, but it
should neither be chosen too high, so that none of the false
neighbors is missed. It has been suggested@14# to take
Rtol;10215. As can be seen from Fig. 3, the decrease of the
false-nearest-neighbor percentage is specially manifest for
low values ofm andRtol increasing to 15220. However, in
some cases the minimum of the false-nearest-neighbor per-
centage goes to a lower value ofm when Rtol is further
increased. The independence onRtol observed for larger em-
bedding dimensions results from the limited number of data.

FIG. 3. False-nearest-neighbor percentage of~a! experimental
and ~b! simulated phase fluctuations, before~empty symbols! and
after ~filled symbols! noise reduction. The embedding delays are
k5 l51.

54 6097HIDDEN ORDER IN THE FREQUENCY NOISE OF AN . . .



Indeed, the density of points in the phase space lowers, so
that the distance betweenYW i and its nearest neighbor is large
and YW i ,1(m) is considered as a false neighbor owing to the
second criterion~6b!. This interpretation is corroborated by
considering that the false-nearest-neighbor percentage be-
comes independent ofRtol for m>6 ~Fig. 3!, 7, and 8 when
Np51024, 2500, and 5000, respectively. On the whole, it
seems thatRtol510230 is suited for the analysis of the de-
pendence of the false-nearest-neighbor percentage onm and
consequently for the estimation of the minimal acceptable
embedding dimension.

3. Effect of experimental noise

Taking into account that actual time series always are
noisy, it remains to ascertain if the residual false neighbors
can be viewed as an effect of the noise, in which case the
presence of an attractor can be inferred, or if this residue is
the manifestation of a stochastic process. In this regard it
must be noted that the false-nearest-neighbor percentage is
more informative than the averaged wavering product be-
cause it is bounded between 0 and 100, so that the percent-
ages of different time series can easily be compared. In par-
ticular, the residual false-nearest-neighbor percentage of the
simulated time series@Fig. 3~b!# is three to four times greater
than that of the experimental recordings@Fig. 3~a!#. Such a
difference is not observed for the averaged wavering prod-
uct. Remembering that the simulated data have been com-
puted for white noises@17#, the results shown in Figs. 3
suggest that the experimental time series might be the super-
position of a deterministic process and a noise. Since the
measurements performed with the streak camera contain
both the instantaneous time phase fluctuations of the elec-
tronic oscillator and the smaller laser jitter@17#, the;5%
residual false-nearest-neighbor percentage may itself arise
from the superposition of the true experimental noise and a
stochastic process. The implication of the noise is still more
obvious for the mean frequency measurements~Fig. 4!. In-

deed, the residual percentage amounts to 6.6 % and 1.2% for
a sampling duration of 10 and 100 ms, respectively, and
drops almost to 0 when the beats are longer averaged. This
decrease of the residue can be understood as an effect of the
smoothing of the noise during a longer time interval.

The presence of an underlying attractor has been further
checked by implementing two additional tests. The first con-
sists of taking advantage of the false-nearest-neighbor per-
centage to determine a starting embedding dimensionm0,
applying a method of noise reduction@27# in the
m0-dimensional embedding space, and computing the false-
nearest-neighbor percentage of the cleaner time series. This
test was applied form056 to data recorded with the streak
camera and to simulated time series. The outcomes are
shown in Fig. 3, forRtol530, together with the results ob-
tained from the original time series. The false-nearest-
neighbor percentage is minimal form54 for both experi-
mental and computed data. However, in the latter case the
effect of the noise reduction is weak, whereas the residue
drops to 1.7% for the experimental data. The difference be-
tween the two time series also reflects on the behavior for
m>5: for the simulated fluctuations@Fig. 3~b!# the curves
corresponding to the original and cleaned data are nearly
parallel, whereas the false-nearest-neighbor percentage of the
cleaned experimental time series@Fig. 3~a!# presents a pla-
teau. Thus the noise reduction supports the preceding con-
clusions: the simulated time series has a behavior character-
istic of a stochastic process, whereas the experimental time
phase fluctuations of the oscillator are consistent with an
underlying attractor.

The second test follows from an objection@28# to the
ability of the false-nearest-neighbor percentage to distinguish
between stochastic and deterministic processes. The idea is
that neighbors considered as true neighbors according to the
criteria of Eqs.~6! may be neighbors in space only because
they are neighbors in time and not, as they should, because
they are in a region that has been visited several times during
the recording of the data. This shortcoming is the same as
that mentioned in Sec. III A, and indeed the proposed rem-
edies@28# are similar. However, for all the time series con-
sidered, the mean time separation between the reference
points and their nearest neighbor is always greater than 300
~in sampling units!, and exceeds 1300 for some of the time
series handled in Fig. 4. Since these values are large com-
pared to the number of available data and, most important,
nearly independent of the embedding dimension, the same
prior conclusion intrudes: the analysis is not warped by
short-time correlations of the time series studied.

Thus these verifications do not weaken the conclusions
drawn from the naive application of the false-nearest-
neighbor percentage method. The time series obtained by
recording either the instantaneous time phase or the beats of
an oscillator are in agreement with a dynamical process in
which a noise is superimposed to a deterministic system with
few degrees of freedom. The underlying attractor might be
unfolded in an embedding phase space of dimension as small
asM5426. The independence of the results on the lags
involved in the reconstruction procedure is due to the large
sampling period or duration, but might no more be accurate
if the instantaneous time phase is recorded at a higher rep-
etition rate or if the beats are averaged over a shorter time.

FIG. 4. False-nearest-neighbor percentage of beat frequency
data measured with various sampling durationst. The embedding
delays arek5 l51. Rtol 530.
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IV. MULTIFRACTAL-TYPE APPROACH

A. Local convergence analysis

An alternative characterization of the frequency noise of
an oscillator has been developed@2# in the spirit of conver-
gence analysis of series. From the original time series
$yi ,i50, . . . ,Np21% several sets of deviations
$D (Ns)yi ,i50,1, . . . ,Np2Ns21%, where

D~Ns!yi5
1

Ns
F (
j5 i1Ns

i12Ns21

yj2 (
j5 i

i1Ns21

yj G , ~7!

are constructed by averaging overNs samples.
From Eq. ~7! it is seen that if no average is performed

(Ns51), D (1)yi is merely one of the terms involved in the
Allan variance. ForNsÞ1, D (1)yi can be viewed as the de-
viation that would result if the sampling duration were
Nst. However,D

(Ns)yi andD (Ns)yi11 only differ because of
the two extreme and the two middle terms, so thatNst can
be considered as a sliding window, whereas for a sampling
duration ofNst the next accessible deviation afterD (Ns)yi
would beD (Ns)yi1Ns

.

By comparingD (Ns)yi to the general term of a Riemann
series(t50

`t2b and bearing in mind that absolute conver-
gence implies convergence, a local scaling exponent

b i
~Ns!52

lnuD~Ns!yi u
ln~Nst!

~8!

is defined. It can be noted that this terminology agrees with
the intuitive approach of oscillators stability: small fluctua-
tions of the experimental data lead to low values of
D (Ns)yi , whence a high scaling exponent, and indeed the
Riemann series converges if and only ifb.1.

The deviationsD (Ns)yi and scaling exponentsb i
(Ns) have

been computed from Eqs.~7! and ~8! for several time series
of instantaneous phase and average frequency. The results
obtained withNs525 for instantaneous phase fluctuations
are shown in Fig. 5~a!. As expected, the highest exponents
arise from the lowest phase deviations. If the data are not
averaged (Ns51), the local scaling exponents are sprayed
over a wide range of values@Fig. 5~b!#, butb i

(Ns).1 for the
whole times series, which corresponds to the general term of
a convergent Riemann series. When the sliding window in-
creases the scaling exponents are smoothed, most of the
b i
(Ns) decrease, and the remaining high exponents appear

more and more as bursts~Fig. 5!. The smooth part of the
curve thus becomes characteristic of a divergent series
(b i

(Ns)<1) and only the bursts indicate a convergence.
Being a matter of convergence or divergence, the experi-

mental time series are too irregular to yield a limiting scaling
exponent in the classical meaning of limits. The sets of
b i
(Ns) therefore cannot be compared directly to the general

term of a Riemann series. However, local discontinuities of
the scaling exponents can be detected by performing a binary
coding of the series. This is done by computing the quantities

d i
~Ns!512

b i11
~Ns!

b i
~Ns!

, ~9a!

which, according to Eq.~8!, are connected to adjacent devia-
tions by the relation

D~Ns!yi11

D~Ns!yi
5~Nst!b

i

~Ns!d
i

~Ns!

. ~9b!

The resulting set of real numbers$d i
(Ns)% can be converted

into a sequence of 0 and 1 by labeling small real numbers
(ud i

(Ns)u,1023) as 0 and the others as 1. The study of the
initial time series is thus turned into that of a binary coding.
From Eq.~9a! it can be inferred that the terms coded as 0
arise from nearly equal adjacent scaling exponents. This ob-
servation is to be compared with the features of the sets
$b i

(Ns)% ~Fig. 5!. As noted before, the smooth parts of the
curves correspond to low scaling exponents, which are them-
selves characteristic of an unstable behavior of the time se-
ries. The zones of the binary coding whered i

(Ns)50 can
therefore be considered as an unstable set, whereas local sta-
bility leads tod i

(Ns)51.

FIG. 5. ~a! Deviations and local scaling exponents of experi-
mental time phase data averaged overNs525. ~b! Local scaling
exponents of crude~upper curve! and averaged overNs5250
~lower curve! beat frequency variations. For the sake of clarity, the
lower curve has been decreased by 0.3.
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The sequences resulting from the binary coding of beat
frequency fluctuations are reported in Fig. 6 for several slid-
ing windows. As expected from the corresponding sets of
local scaling exponents, the unstable clusters enlarge and be-
come more numerous asNs is increased. This is to be related
to the smoothing of the curves$b i

(Ns)% for growing sliding
windows. However, the binary coding enables a fine exami-
nation of the local stability. It is indeed observed that the
unstable set, which reflects large fluctuations in the measured
time series, is never empty, even whenb i

(Ns).1 for the
whole series~for example, ifNs51). Thus the binary cod-
ing, to which four consecutiveyi contribute, emphasizes lo-
cal instabilities that are hidden in the scaling exponent analy-
sis where only two consecutive data are involved.

B. Global convergence analysis

The last step in the multifractal-type approach is the study
of the global convergence. Here the binary sequence is ana-
lyzed as a whole. To this end, two additional real numbers
are defined:

ds,i
~Ns!5

1

2(j50

`

d i1 j
~Ns!22 j , ~10a!

dc,i
~Ns!5n0i11/$n1i11/@n2i11/~n3i1••• !#%, ~10b!

wheren0i50; i and the other integers mean that the part of
the binary coding that starts atd i

(Ns) is a sequence of
n1i21 consecutive 0, followed byn2i consecutive 1,n3i
consecutive 0, and so on. From their definition, the numbers
calculated using Eqs.~10! lie in the interval @0,1#. For a
structurally stable~or globally convergent! sequence, where
there is a majority of bits of the same kind~0 or 1!, the
occurrence of a bit of alternative type~1 or 0! only weakly
affectsds,i

(Ns) anddc,i
(Ns) . In this case they rapidly converge to

rational numbers: fordc,i
(Ns) it follows from the big integers

entering into Eq.~10b!, while for ds,i
(Ns) it is due to the pres-

ence~absence! of only few terms in Eq.~10a!. Contrarily, a
sequence with a discontinuous distribution of 0 and 1 is
strongly sensitive to this distribution and indicates a structur-

ally unstability~or ergodicity!. The slippery devil’s staircase
@29#, which representsds,i

(Ns) as a function ofdc,i
(Ns) is a mono-

tonically increasing curve whose steps correspond to rational
values ofds,i

(Ns) and dc,i
(Ns) The global convergence can be

studied from the properties of this graph. For an uncorrelated
binary sequence there are gaps at the steps locations@2# be-
cause the bits 0 and 1 are randomly distributed. On the con-
trary, a structurally stable sequence presents long ranges of
identical bits, so thatds,i

(Ns) and dc,i
(Ns) are close to rational

numbers and the staircase steps fill.
The devil’s staircase built according to Eqs.~10! for a

time series of instantaneous time phase measurements is re-
ported in Fig. 7 for various sliding windows. From a practi-
cal point of view, it was found that the infinite summations
of Eqs.~10! are well approximated with only 50 bits. If the
data are not averaged (Ns51), the staircase is almost re-
duced to the step corresponding tods,i

(Ns)5dc,i
(Ns)51, in agree-

ment with the binary coding. Indeed, nearly all the bits be-
long to the stable set, so that Eq.~10a! appears as a
geometrical progression whose limit is 1 when enough terms
are involved, while Eq.~10b! is to be calculated forn1i51
and a high value ofn2i leading todc,i

(Ns);1 for almost every
i . The occurrence of some bits 0 in the coding results in the
filling of a few other steps, especially those attached to
ds,i
(Ns)5 1

2,
3
4,

7
8. In particular, Eqs.~10! show that the filling of

the stepds,i
(Ns)5dc,i

(Ns)51/2 comes from the pieces of sequence

whose first bit isd i
(Ns)50. In the same way that the increase

of the sliding window transfers more and more bits to the
unstable set of the coding, it leads to the filling of steps
belonging to the lower part of the staircase and of steep parts
of the curve located between steps.

The results of the multifractal-type approach can now be
summarized. Applying Eq.~8! to a time series with small
fluctuations results in high (.1) scaling exponents, indicat-
ing a local stability. However, for small deviations the expo-
nent is very sensitive toD (Ns)yi , so that the collection
$b i

(Ns)% is highly discontinuous. Remembering that any

d i
(Ns)>1023 is coded as 1, such collections$b i

(Ns)% neverthe-
less lead to a binary sequence mostly constituted of bits

FIG. 6. Binary coding of beat frequency fluctuations averaged
over different values ofNs .

FIG. 7. Devil’s staircase of experimental time phase fluctuations
averaged overNs51,25, and 250 from left to right, respectively.
For the sake of clarity,dc,i

(Ns) has been decreased~increased! by 0.3
for Ns51 ~250!.
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equal to 1 that form a locally stable set, whereas the unstable
set is sparse. Besides, the presence of long strings of bits of
the same type~1 in this case! points out the global stability
of the time series. This stability is at last highlighted by the
devil’s staircase in which it is reflected by the filling of steps
attached to rationalds,i

(Ns) anddc,i
(Ns) whereas the intermediary

steep parts of the curve are unoccupied. This outline is actu-
ally observed for the experimental time series when the data
are not averaged (Ns51). As the sliding window is in-
creased, the series look locally unstable because more and
more bits are transferred from the stable to the unstable set of
the binary coding, as a result of the low and smoothly vary-
ing scaling exponents. However, the steps of the devil’s
staircase remain filled, indicating that the series are globally
convergent.

V. CONCLUSION

Two methods of detecting correlations and possible deter-
minism in the time series of an electronic oscillator were
considered. The embedded time series analysis in Sec. III is

compatible wih the existence of a hidden attractor of low
dimension. On the other hand, the multifractal-type approach
in Sec. IV demonstrates remote correlations in the time se-
quence.

Nonlinear dynamics provides a variety of approaches that
may be useful in the context of such experiments. Recently,
the study of synchronized states in driven differential equa-
tions led to typical mappings of the circle on itself~Arnol’d-
type mappings!, which could explain physical effects such as
the Josephson effect, modulations in a phase locked loop,
and cardiac pacemakers@30#.

A similar approach was used to account for the interaction
of a high-frequency driving signal and a delay line oscillator
undergoing a modulational instability. Steps on a frequency-
amplitude characteristic are observed at rational ratios be-
tween carrier and envelope frequencies in agreement with the
deterministic mapping. A stability range of eight orders of
magnitude is obtained thanks to that method@31#. This
leaves us confident that a deterministic approach using qua-
siperiodic states may help to understand the low-frequency
noise of an electronic oscillator.

@1# D.W. Allan, IEEE Trans. Ultrason. Ferroelec. Freq. Control
34, 647 ~1987!.

@2# M. Planat, G. Marianneau, N. Ratier, and F. Lardet-Vieudrin,
Appl. Phys. Lett.67, 3206~1995! ; M. Planat, V. Giordano, G.
Marianneau, F. Vernotte, M. Mourey, C. Eckert, and J.A.
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